Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Food Chem X ; 21: 101155, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38370302

RESUMO

Aroma is an important factor affecting the quality of tea. Fatty acids are one of precursors and their derived contributes to tea aroma considerably. In this study, we analyzed the fatty acids of Jinmudan fresh tea leaves in different stalk position. It was found that with shoot maturity increased, the content of PUFAs (Polyunsaturated fatty acids) was increased while the content of SFAs (Saturated fatty acids) and MUFAs (Monounsaturated fatty acids) gradually decreased. During the processing period, totally 704 kinds of compounds were identified, among them, 27 kinds of fatty acid-derived volatile compounds were selected including 6 kinds of aldehydes, 8 kinds of alcohols, 13 kinds of esters and their dynamic change were revealed. Finally, the character of aroma during main processing stages and processed tea was concluded by using a flavor wheel. This study results provide a theoretical basis for the improvement of processing and quality in Jinmudan black tea.

2.
Chinese Journal of Biotechnology ; (12): 359-373, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927716

RESUMO

Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.


Assuntos
Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Chá
3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-363812

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 that urgently needs an effective treatment. Nucleoside analog drugs including favipiravir have been repurposed for COVID-19 despite of unclear mechanism of their inhibition of the viral RNA polymerase (RdRp). Here we report the cryo-EM structures of the viral RdRp in complex with favipiravir and two other nucleoside inhibitor drugs ribavirin and penciclovir. Ribavirin and the ribosylated form of favipiravir share a similar ribose scaffold that is distinct from penciclovir. However, the structures reveal that all three inhibitors are covalently linked to the primer strand in a monophosphate form despite the different chemical scaffolds between favipiravir and penciclovir. Surprisingly, the base moieties of these inhibitors can form mismatched pairs with the template strand. Moreover, in view of the clinical disadvantages of remdesivir mainly associated with its prodrug form, we designed several orally-available remdesivir parent nucleoside derivatives, including VV16 that showed 5-fold more potent than remdesivir in inhibition of viral replication. Together, these results demonstrate an unexpected promiscuity of the viral RNA polymerase and provide a basis for repurpose and design of nucleotide analog drugs for COVID-19. One Sentence SummaryCryo-EM structures of the RNA polymerase of SARS-CoV-2 reveals the basis for repurposing of old nucleotide drugs to treat COVID-19.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-328336

RESUMO

The COVID-19 pandemic by non-stop infections of SARS-CoV-2 has continued to ravage many countries worldwide. Here we report the discovery of suramin, a 100-year-old drug, as a potent inhibitor of the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) through blocking the binding of RNA to the enzyme. In biochemical assays, suramin and its derivatives are at least 20-fold more potent than remdesivir, the currently approved nucleotide drug for COVID-19. The 2.6 [A] cryo-EM structure of the viral RdRp bound to suramin reveals two binding sites of suramin, with one site directly blocking the binding of the RNA template strand and the other site clash with the RNA primer strand near the RdRp catalytic active site, therefore inhibiting the viral RNA replication. Furthermore, suramin potently inhibits SARS-CoV-2 duplication in Vero E6 cells. These results provide a structural mechanism for the first non-nucleotide inhibitor of the SARS-CoV-2 RdRp and a rationale for repurposing suramin for treating COVID-19. One Sentence SummaryDiscovery and mechanism of suramin as potent SARS-CoV-2 RNA polymerase inhibitor and its repurposing for treating COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...